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F L O W  O F  A T H I N  L A Y E R  O F  A V I S C O U S  L I Q U I D  

O V E R  A D R Y  S U R F A C E  

S. M. Shugrin* UDC 532.5 

The problem of flow of a thin layer of a viscous liquid over a dw surface is formulated (ignoring 
surface tension). Examples of calculations are given. The results are compared with a solution 
using an appropriate one-dimensional model that admits an exact solution. Singularities of the 
solution are analyzed. 

1. E q u a t i o n s .  The  equations of a thin layer of a viscous liquid (a long-wave approximation) ignoring 
surface tension have the form [11 (Fig. 1) 

Ou Ou Ou O(h cos 0) 02u 
O"'t+u-~z+V-~z +9 az = t/~-z2 + #sin0;  (1.1) 

au au  
0-'~ + ~z  = 0, (1.2) 

where u = u(t, z, z), v = v(t, z, z), h = h(t, z), 0 <~ z <~ h, 0 <~ z ~ l(t), and z ... l(t) => h .., O. 
Equations (1.1) and (1.2) are supplemented by the following boundary conditions [1]: 

on the rigid surface (z = 0), 

and on the free surface (z = h), 

u = v = 0; (1.3) 

Ou Oh Oh 
= 0, (1.4) 

Model (1.1)-(1.4) will be referred to as a two-dimensional model. 

The conditions and singularities at the point of contact of the free and solid surfaces are discussed 

below. For z = 0, we set u = qo(t,z), and for t = 0 we have u = uo(z,z) and h = h0(z). It is assumed that 

u > 0 .  
In the formulation of the initial and boundary conditions, the distribution of the velocity u in z obeys 

a parabolic law. 
2. O n e - D i m e n s i o n a l  M o d e l .  Before discussing the singularities of model (1.1)-(1.4), it is useful 

to consider the one-dimensional model. Assuming that  for z />  0 the velocity distribution corresponds to a 
parabolic law and integrating (1.1) and (1.2) for z going from z = 0 to z = h, we obtain the equations [2-4] 

Oh O(hU) 
a--t + cgz = 0 ;  (2.1) 

h 

a(hU) a (6  gh2 ) - - -  (U = ~, q = / u d z ) .  (2.2) + -~z hUU + - -~  cos 0 = gh sin 0 3UUh q 
0 

*Deceased. 
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Noteworthy is the presence of a singularity in the term that describes friction: for h ,,, 0 and U # 0, 
the friction becomes indefinitely large. This singularity has a determining effect on the character of the free 
surface near the point of contact with the solid surface. 

System (2.1) and (2.2) admits a simple and useful exact solution (previously, a similar solution was 
obtained in hydraulics [4]). Let 

U = const > 0 = 9H 2 sin O/(3v), 0 > O. 

We introduce the following dimensionless quantities: 

t h U H sinO i.e., 0 = 1 .  
~'~'h'  { = ' T '  7 t - - i f ,  O = V ,  T = . V ,  V-~gH2 3t , '  

Setting ~ = ~ - t, we have h = h(~). In the given case, it is also convenient to set 

UH gH 3 
Re _ = sin 0. (2.3) 

As a result, we obtain 

- A h  + - ~  ln(1 -F h) 1 + a ln(1 - h) = 15 .~ 15 _ 15 (2.4) 
2 - ~ (  - ~ 0 ) = - ~ e e ( Z - x 0 ) - t 0 ,  A - i R e .  

3. S ingular i t ies  and Condi t ions  at the  Point  of  Contact .  Under the assumption that  U(t, z) > 0 
(the function U is smooth) for z < l(t), the natural boundary condition at the point of contact z = l(t) is 
written as 

x --* l =~ h--, O, 

From (2.4) it follows that  for tt ~, 0, we have 

dh 1 

dl 
- -  = lim U. (3.1) 
dt ~--,I 

h " ~ - $ l .  (3.2) 

For (2.1) and (2.2), the singularity (3.2) has a general character. Indeed, we assume that for z < l, 
the function U is smooth and lim U = U > a (~ = const > 0). According to (3.1), we have dI/dt = [/> O. 
Taking into account (2.1) and retaining the basic terms for h -~ 0 in (2.2), we have 

oh ; ,oh i oh 
at  + u--o~ : o, g O O a  ~ -3.0, - -  -~ 

whence 

J3Oull- ah ~1~ 1 
h ~ v ~ ~1 ~ ~ N - x l  (3.3) 
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For the two-dimensional model (1.1)-(1.4), using a simple line of reasoning we also obtain a singularity 
of the type of (3.2). In this case, it is significant that  in a neighborhood of the point of contact, U(x) > 
(a = coast > 0). Since the reasoning that  leads to (3.2) is not too rigorous, it is expedient to omit it and 
regard (3.2) as a probable hypothesis confirmed by a computational experiment (Fig. 2 and Example 1). 

Apparently, in the absence of surface tension, the singularity (3.2) also holds for the two-dimensional 
Navier-Stokes equations provided that  in a neighborhood of the point of contact with the solid surface x = l(t), 
the condition 

h 

U(x) = -~ udz  > O (x < l) (3.4) 
0 

is satisfied (the boundary moves to the right). In all these cases with no surface tension and with satisfaction 
of condition (3.4) in a neighborhood of the point of contact, the natural boundary condition is similar to (3.1), 
i.e., has the form 

dl 
- -  = l im U. (3 .5)  z - .  l =~ h - - .  O, dt x - t  

If the liquid flows on the average from the point of contact, i.e., if in a neighborhood of the point 
z = l(t), the condition opposite to (3.4), 

h ' /  v(x)  = g ,,dz < 0 < O, (3.6) 
0 

is satisfied, it is most likely that  the point of contact is completely attached to the solid surface, i.e., (3.5) 
should be replaced by the condition 

dl 
x --* ! ( t )  =*, h ~ 0, d-t = 0. (3 .7)  

Thus, in the above cases with no surface tension, the  boundary condition is of the same type: if in a 
neighborhood of the point of contact, (3.4) holds, condition (3.5) is specified, and if (3.6) holds, condition 
(3.7) is specified. 

In addition, if l im U > 0 and the function U(x,  t) is smooth in a neighborhood of the point of contact, 
z---t! 

there is a singularity of the  type (3.2). Thus, the angle a between the free surface and the solid surface is 
equal to 7r/2. 

For numerical solution of the problem, conditions (3.4)-(3.7) are not convenient. Therefore, in the 
calculations it was assumed that  h - 6 > 0 at t = 0 and z / >  l(0), i.e., a layer of a rather shallow depth 
(~ > 0) was "poured." After that ,  a through-calculation procedure was used (for the two-dimensional model, 
it was combined with a splitt ing method).  But this also involves certain computational  difficulties because 
in the main flow region for x < l and in the region of "poured" liquid for z > l, the characteristic sizes of 
the difference grid are markedly different; the difficulties were overcome using the implicit difference schemes 
described in [5]. 

This computat ional  method of a "poured" shallow layer appears to be physically correct in the absence 
of surface tension. However, in the presence of the latter, the correctness of the method is questionable. 

R e m a r k .  It follows from the aforesaid that  the introduction of surface tension radically changes the 
situation. With accurate allowance for surface tension and the at tachment  condition (1.3), the two-dimensional 
model of a thin layer (1.1), (1.2) appears to be physically and mathematically incorrect in the presence of 
contact between the free and solid surfaces. 

For two-dimensional Navier-Stokes equations, it was proved [6] that  for 0 < a < ~r (see Fig. 1), the 
free-surface conditions and the a t tachment  condition are incompatible. Nevertheless, physically the situations 
a = 0 and a = ~r, appear to be possible for complete Navier-Stokes equations. If ct = 0, then for z ,-- l, the 
liquid rolls on the solid surface as a wheel [in particular, this means that  there is a singularity for the curl of 
w as z --* 0 and z -- , /( t)] .  For a = % the point of contact is most likely to be at tached to the solid wall, so 
that  dl/dt = 0 and lira u = 0 in this case. 

z--*l 
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Because of the difficulties related to the compatibility of at tachment conditions and free-surface 
conditions if surface tension is taken into account, attachment conditions are replaced by slip conditions 
in some papers, and this regularizes the problem mathematically (see, e.g., [5, 6]). However, the physical 
correctness of this method is questionable. 

4. E x a m p l e s  o f  Ca lcu la t ions .  We give examples of calculations for the two-dimensional model 
(1.1)-(1.4). 

E x a m p l e  1. Comparison of the Two-Dimensiona/ and One-Dimensional Models. For the one- 
dimensional model, we constructed the exact solution (2.4), which has points of contact between the free 
and solid surfaces with a tangency angle c~ = lr/2. It is of interest to compare this solution with a calculation 
using the two-dimensional model. For { = 0 and ~ ~< 100 (in dimensionless variables), the initial profile h(x) 
was taken in accordance with (2.4), i.e., }~0 = e = 0.001 for ~ > 100, and Re = 10 [see (2.3)]. The solutions for 
{ = 150 are compared in Fig. 2. Good agreement is observed everywhere except for the wave front, although 
the travel time is practically the same in both models. 

The difference at the front suggests some inaccuracy of the one-dimensional model (2.1) and (2.2), 
probably because the assumption of parabolicity of the velocity distribution at the wave front is not quite 
valid. 

E x a m p l e  2. Inddence of a Wave on a Shore. Figures 3-5 show examples of calculation of the incidence 
of a wave on a shore using the two-dimensional model. For z = 50, the following law of variation of the free- 
surface mark was specified: ~ = 40 + A sin 2~{/To. For a large period (To = 100), the wave runs smoothly on 
the shore and runs off smoothly (Fig. 3). With decrease in the period To, a sequence of intermittent waves 
(breakers) forms. Figure 4 gives an example of the calculation for To = 10. The calculations show that, with 
a further decrease in To and/or  increase in the amplitude A, the amount of breakers increases (Fig. 5). 
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